Search results for " 14R25"
showing 3 items of 3 documents
Algebraic models of the Euclidean plane
2018
We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.
Algebraic models of the real affine plane
2017
We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the real affine plane, contrary to the compact case.
Proper triangular Ga-actions on A^4 are translations
2013
We describe the structure of geometric quotients for proper locally triangulable additve group actions on locally trivial A^3-bundles over a noetherian normal base scheme X defined over a field of characteristic 0. In the case where dim X=1, we show in particular that every such action is a translation with geometric quotient isomorphic to the total space of a vector bundle of rank 2 over X. As a consequence, every proper triangulable Ga-action on the affine four space A^4 over a field of characteristic 0 is a translation with geometric quotient isomorphic to A^3.